题目内容
【题目】如图,点O是△ABC边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(Ⅰ)求证:OE=OF;
(Ⅱ)若CE=8,CF=6,求OC的长;
【答案】(Ⅰ)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,4=∠6,
∵MN∥BC,
∴∠1=∠5,3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF;
(Ⅱ)∵∠2=∠5,∠4=∠6,
∴∠2+∠4=∠5+∠6=90°,
∵CE=8,CF=6,
∴EF=
∴OC=EF=5;
【解析】(Ⅰ)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案; (Ⅱ)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长.
练习册系列答案
相关题目