题目内容
【题目】如图,是平行四边形,对角线在轴正半轴上,位于第一象限的点和第二象限的点分别在双曲线和的一个分支上,分别过点作轴的垂线段,垂足分别为点和,则以下结论:
①; ②阴影部分面积是;
③当时,; ④若是菱形,则两双曲线既关于x轴对称,也关于y轴对称.
其中正确结论的个数是
A. 个B. 个C. 个D. 个
【答案】B
【解析】
作AE⊥y轴于点E,CF⊥y轴于点F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△AOM=|k1|=OMAM,S△CON=|k2|=ONCN,所以有;由S△AOM=|k1|,S△CON=|k2|,得到S阴影部分=S△AOM+S△CON=(|k1|+|k2|)=(k1-k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.
作AE⊥y轴于E,CF⊥y轴于F,如图,
∵四边形OABC是平行四边形,
∴S△AOB=S△COB
∴AE=CF,
∴OM=ON,
∵S△AOM=|k1|=OMAM,S△CON=|k2|=ONCN,
∴,故①正确;
∵S△AOM=|k1|,S△CON=|k2|,
∴S阴影部分=S△AOMspan>+S△CON=(|k1|+|k2|),
而k1>0,k2<0,
∴S阴影部分=(k1-k2),故②正确;
当∠AOC=90°,
∴四边形OABC是矩形,
∴不能确定OA与OC相等,
而OM=ON,
∴不能判断△AOM≌△CNO,
∴不能判断AM=CN,
∴不能确定|k1|=|k2|,故③错误;
若OABC是菱形,则OA=OC,
而OM=ON,
∴Rt△AOM≌Rt△CNO,
∴AM=CN,
∴|k1|=|k2|,
∴k1=-k2,
∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.
故选B.