题目内容
【题目】在△ABC中,sin A=sin B=,AB=12,M为AC的中点,BM的垂直平分线交AB于点N,交BM于点P,那么BN的长为_____.
【答案】
【解析】
PN垂直平分BM,作CD⊥AB于D,MH⊥AB于H,如图,由sin∠A=sin∠B得到∠A=∠B,则根据等腰三角形的性质得AD=BD=AB=6,在Rt△ACD中,根据正弦的定义得sin A==,可设CD=4t,AC=5t,根据勾股定理得AD=3t,则3t=6,解得t=2,所以AC=10,AM=5,再在Rt△AMH中,利用sin A==得到MH=4,于是有AH=3,HB=AB-AH=9,由于PN垂直平分BM,根据线段的垂直平分线的性质得NM=NB,设NB=x,则NM=x,HN=9-x,在Rt△MHN中,根据勾股定理有x2=42+(9-x)2,解得x=.
如图,过点C作CD⊥AB于点D,过点M作MH⊥AB于点H,
∵sin A=sin B,
∴∠A=∠B,
∴AD=BD=AB=×12=6,
在Rt△ACD中,sin A==,
∴AC=10,
∵M点为AC的中点,
∴AM=5,
在Rt△AMH中,sin A==,
∴MH=4,
∴AH=3,HB=AB-AH=9,
∵PN垂直平分BM,
∴NM=NB,
设NB=x,则NM=x,HN=9-x,
在Rt△MHN中,NM2=MH2+HN2,
∴x2=42+(9-x)2,解得x=,即NB的长为.
【题目】九(1)班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类别,每位同学仅选一项.根据调査结果绘制了不完整的频数分布表和扇形统计图.
类别 | 频数(人数) | 频率 |
小说 | a | 0.5 |
戏剧 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合计 | b | 1 |
根据图表提供的信息,回答下列问题:
(1)直接写出:a= .b= m= ;
(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请求选取的2人恰好是甲和乙的概率.