题目内容
【题目】如图,一次函数y=x+1的图象与反比例函数y=(k为常数,且k≠0)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)设一次函数y=x+1的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.
【答案】解:(1)∵一次函数图象过A点,
∴2=m+1,解得m=1,
∴A点坐标为(1,2),
又反比例函数图象过A点,
∴k=1×2=2,
∴反比例函数解析式为y=.
(2)∵S△ABP=×PB×yA=2,A(1,2),
∴2PB=4,
∴PB=2,
由y=x+1可知B(﹣1,0),
∴点P的坐标为(1,0)或(﹣3,0).
【解析】(1)把A点坐标代入一次函数解析式可求得n的值,可得到A点坐标,再把A点坐标代入反比例函数解析式可求得k的值,可得到反比例函数解析式.
(2)根据直线的解析式求得B的坐标,然后根据三角形的面积求得PB的长,进而即可求得P的坐标.
练习册系列答案
相关题目