题目内容

【题目】探究与发现如图1所示的图形像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”

(1)观察“规形图”试探究∠BDC与∠A、∠B、∠C之间的关系并说明理由

(2)请你直接利用以上结论解决以下三个问题

如图2,把一块三角尺XYZ放置在△ABC使三角尺的两条直角边XYXZ恰好经过点BC,∠A=40°,则∠ABX+∠ACX=   °;

如图3,DC平分∠ADBEC平分∠AEB若∠DAE=40°,∠DBE=130°,求∠DCE的度数

如图4,∠ABD,∠ACD10等分线相交于点G1G2…、G9若∠BDC=133°,∠BG1C=70°,求∠A的度数

【答案】(1)∠BDC=A+B+C;(2)①50°;②85°;③63°.

【解析】

(1)延长BDACF根据外角的性质即可判断出∠BDC=∠BAC+∠B+∠C

(2)由(1)可得∠ABX+∠ACX+∠A=∠BXC然后根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的值

由(1)可得∠DBE=∠DAE+∠ADB+∠AEB再根据∠DAE=40°,∠DBE=130°,求出∠ADB+∠AEB的值然后根据∠DCE(∠ADB+∠AEB)+∠DAE即可求出∠DCE的度数

根据∠BG1C(∠ABD+∠ACD)+∠A,∠BG1C=70°,设∠Ax°,可得∠ABD+∠ACD=133°﹣x°,解方程求出x的值即可判断出∠A的度数

1)如图(1),延长BDACF根据外角的性质可得:∠DFC=∠A+∠B

∵∠BDC=∠DFC+∠C,∴∠BDC=∠A+∠B+∠C

(2)由(1),可得:∠ABX+∠ACX+∠A=∠BXC

∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°.

故答案为:50.

由(1),可得:∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE(∠ADB+∠AEB)+∠DAE=45°+40°=85°;

BG1C(∠ABD+∠ACD)+∠A

∵∠BG1C=70°,∴设∠Ax°.

∵∠ABD+∠ACD=133°﹣x°

(133﹣x)+x=70,∴13.3x+x=70,解得x=63,即∠A的度数为63°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网