题目内容

【题目】如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=ABAE.
求证:DE是⊙O的切线.

【答案】证明:连接DC,DO并延长交⊙O于F,连接AF.

∵P点为△ABC的内心,

∴∠BAD=∠DAE,

又∵AD2=ABAE,即 =

∴△BAD∽△DAE,

∴∠ADB=∠E.

又∵∠ADB=∠ACB,

∴∠ACB=∠E,BC∥DE,

∴∠CDE=∠BCD=∠BAD=∠DAC,

又∵∠CAF=∠CDF,

∴∠FDE=∠CDE+∠CDF=∠DAC+∠CAF=∠DAF=90°,

故DE是⊙O的切线.


【解析】由P点为△ABC的内心,得到∠BAD=∠DAE,又AD2=ABAE,得到△BAD∽△DAE,∠ADB=∠E,又∠ADB=∠ACB,得到∠ACB=∠E,BC∥DE,∠CDE=∠BCD=∠BAD=∠DAC,又∠CAF=∠CDF,得到∠FDE=∠CDE+∠CDF=∠DAC+∠CAF=∠DAF=90°,故DE是⊙O的切线.
【考点精析】解答此题的关键在于理解切线的判定定理的相关知识,掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网