题目内容
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.
【答案】(1)反比例函数解析式为y=﹣,一次函数解析式为y=﹣2x﹣4;(2)4.
【解析】
试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;
(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,
=m+8,
解得m=﹣6,
m+8=﹣6+8=2,
所以,点A的坐标为(﹣3,2),
反比例函数解析式为y=﹣,
将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
解得n=1,
所以,点B的坐标为(1,﹣6),
将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,
,
解得,
所以,一次函数解析式为y=﹣2x﹣4;
(2)设AB与x轴相交于点C,
令﹣2x﹣4=0解得x=﹣2,
所以,点C的坐标为(﹣2,0),
所以,OC=2,
S△AOB=S△AOC+S△BOC,
=×2×3+×2×1,
=3+1,
=4.
练习册系列答案
相关题目