题目内容
【题目】如图,点A是反比例函数 图像上的一点,过点A作AB⊥轴于点B,且△AOB的面积为2,点A的坐标为.
(1)求m和k的值.
(2)若一次函数y=ax+3的图像经过点A,交双曲线的另一支于点C,交y轴于点D,求△AOC的面积.
(3)在轴上是否存在点P,使得△PAC的面积为6?如果存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)m=4,k=-4;(2);(3)存在,P点坐标为(0,)或(0,).
【解析】
试题分析:(1)△AOB的面积为2,点A的坐标为(-1,m)得,求出m的值,把点A坐标代入求得k的值即可;(2)把A(-1,4)代入y=ax+3求出一次函数的表达式,联立,解方程组求出点C的坐标,进而求出△AOC的面积;(3)假设存在,设P点坐标为(0,c)有:=6,进而求出c的值即可.
试题解析:(1)依题意得,∴m=4,∴A(-1,4),把点A(-1,4)代入得,∴k=-4,答:m=4,k=-4;
(2)把A(-1,4)代入y=ax+3得:4=-a+3,解得a=-1,∴y=-x+3,又∵反比例函数的表达式为,联立,解得,,∴C的坐标为(4,-1),又当x=0时y=-x+3=-0+3=3,∴OD=3,∴==;
(3)答:存在. 理由: 假设存在,设P点坐标为(0,c)有:=6,解得或,∴P点的坐标为(0,)或(0,), 故存在P点使得△PAC的面积为6.
【题目】某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.
甲种客车 | 乙种客车 | |
载客量(座/辆) | 60 | 45 |
租金(元/辆) | 550 | 450 |
(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;
(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?