题目内容
【题目】如图,平面直角坐标系中,、,且、满足
(1)求、两点的坐标;
(2)过点的直线上有一点,连接、, ,如图2,当点在第二象限时,交轴于点,延长交轴于点,设的长为,的长为,用含的式子表示;
(3)在(2)的条件下,如图3,当点在第一象限时,过点作交于点,连接,若,,求的长.
【答案】(1)A(0,5)、B(5,0);(2);(3).
【解析】
(1)先根据非负数的性质求出a、b的值,进而可得结果;
(2)先根据余角的性质证得∠DAO=∠CBD,进而可根据ASA证明△ADO≌△BEO,可得,进一步即可得出d和m的关系式;
(3)过点作于,交CB延长线于点,根据四边形的内角和和平角的定义易得,从而可根据AAS证明△OAM≌△OBN,可得,可得CO是直角∠ACB的平分线,进一步即可推出,过点作于,由等腰直角三角形的性质可得,进而可得,然后即可根据SAS证明△AOF≌△OBK,可得,然后再利用等腰直角三角形的性质和角平分线的性质得出BC和AC的关系,进而可得结果.
解:(1)∵,,
,∴A(0,5)、B(5,0);
(2)如图2,,,
,,∴∠DAO=∠CBD,
∵AO=BO=5,∠DOA=∠EOB=90°,
∴△ADO≌△BEO(ASA),
,;
(3)过点作于,交CB延长线于点,如图4,,
∵四边形的内角和为,,
,
,,
,∴△OAM≌△OBN(AAS),
,,
,,,
过点作于,,
,
,,
,,
,∴△AOF≌△OBK(SAS),
,,
过点作于,,
,.
【题目】甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均成绩/环 | 中位数/环 | 众数/环 | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)写出表格中a,b,c的值;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.