题目内容
【题目】如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.
(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)
(2)求景点C与景点D之间的距离.(结果精确到1km)
(参考数据: =1.73, =2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)
【答案】(1)3.1km;(2)4km.
【解析】解:(1)如图,过点D作DE⊥AC于点E,
过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,
∴AF=AD=×8=4,∴DF=,
在Rt△ABF中BF==3,
∴BD=DF﹣BF=4﹣3,sin∠ABF=,
在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,
∴DE=BDsin∠DBE=×(4﹣3)=≈3.1(km),
∴景点D向公路a修建的这条公路的长约是3.1km;
(2)由题意可知∠CDB=75°,
由(1)可知sin∠DBE==0.8,所以∠DBE=53°,
∴∠DCB=180°﹣75°﹣53°=52°,
在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),
∴景点C与景点D之间的距离约为4km.
练习册系列答案
相关题目