题目内容

如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
精英家教网
分析:(1)△BDA沿BD翻折,使点A落在BC边上的点F处,可以知道四边形ADFB是正方形,因而BF=AB=OC=2,则CF=3-2=1,因而E、F的坐标就可以求出.
(2)顶点为F的坐标根据第一问可以求得是(1,2),因而抛物线的解析式可以设为y=a(x-1)2+2,以点E、F、P为顶点的三角形是等腰三角形,应分EF是腰和底边两种情况进行讨论.
当EF是腰,EF=PF时,已知E、F点的坐标可以求出EF的长,设P点的坐标是(0,n),根据勾股定理就可以求出n的值.得到P的坐标.
当EF是腰,EF=EP时,可以判断E到y轴的最短距离与EF的大小关系,只有当EF大于E到y轴的距离,P才存在.
当EF是底边时,EP=FP,根据勾股定理就可以得到关于n的方程,就可以解得n的值.
(3)作点E关于x轴的对称点E′,作点F关于y轴的对称点F′,连接E′F′,分别与x轴、y轴交于点M,N,则点M,N就是所求点.求出线段E′F′的长度,就是四边形MNFE的周长的最小值.
解答:解:(1)E(3,1);F(1,2).

(2)在Rt△EBF中,∠B=90°,
∴EF=
EB2+BF2
=
12+22
=
5

设点P的坐标为(0,n),其中n>0,
∵顶点F(1,2),
∴设抛物线解析式为y=a(x-1)2+2(a≠0).
①如图1,
精英家教网当EF=PF时,EF2=PF2
∴12+(n-2)2=5.
解得n1=0(舍去);n2=4.
∴P(0,4).
∴4=a(0-1)2+2.
解得a=2.
∴抛物线的解析式为y=2(x-1)2+2
②如图2,
精英家教网当EP=FP时,EP2=FP2
∴(2-n)2+1=(1-n)2+9.
解得n=-
5
2
(舍去)
③当EF=EP时,EP=
5
<3
,这种情况不存在.
综上所述,符合条件的抛物线解析式是y=2(x-1)2+2.

(3)存在点M,N,使得四边形MNFE的周长最小.精英家教网
如图3,作点E关于x轴的对称点E′,作点F关于y轴的对称点F′,
连接E′F′,分别与x轴、y轴交于点M,N,则点M,N就是所求点.
∴E′(3,-1),F′(-1,2),NF=NF′,ME=ME′.
∴BF′=4,BE′=3.
∴FN+NM+ME=F′N+NM+ME′=E′F′=
32+42
=5

又∵EF=
5

∴FN+MN+ME+EF=5+
5
,此时四边形MNFE的周长最小值是5+
5
点评:本题主要考查了待定系数法求函数解析式,求线段的和最小的问题基本的解决思路是根据对称转化为两点之间的距离的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网