题目内容
某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:
原料名称 饮料名称 | 甲 | 乙 |
A | 20克 | 40克 |
B | 30克 | 20克 |
(1)有几种符合题意的生产方案写出解析过程;
(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?
(1)21种.(2)y=-0.2x+280.x=40时成本总额最低.
解析试题分析:(1)设生产A种饮料x瓶解出不等式方程组即可.
(2)如图可得x与y的关系式,可知道x与y的关系.
试题解析:(1)根据题意得:
,
解这个不等式组,得20≤x≤40.
因为其中正整数解共有21个,
所以符合题意的生产方案有21种.
(2)根据题意,得y=2.6x+2.8(100-x),
整理,得y=-0.2x+280.
∵k=-0.2<0,
∴y随x的增大而减小.
∴当x=40时成本总额最低.
考点:一元一次不等式组的应用.
练习册系列答案
相关题目
某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计算;月用水量超过20m3时,超过部分按2.6元/m3计费。设每户家庭用水量为时,应交水费y元。
(1)分别求出和时y与x的关系式;
(2)小明家第二季度交纳水费的情况如下:
月份 | 四月份 | 五月份 | 六月份 |
交费金额 | 30元 | 34元 | 42.6元 |
A城有肥料300吨,B城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A城运往甲乡的肥料为x吨.
(1)请你填空完成下表中的每一空:
调入地 化肥量(吨) 调出地 | 甲乡 | 乙乡 | 总计 |
A城 | x | _________ | 300 |
B城 | _________ | _________ | 200 |
总计 | 260 | 240 | 500 |
(3)怎样调运化肥,可使总运费最少?最少运费是多少?