题目内容
【题目】我市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为.
(1)根据题意,填写下表:
单人间的房间数 | 10 | … | … | 30 | |
双人间的房间数 | _________ | … | … | 60 | |
三人间的房间数 | 70 | … | _________ | … | _________ |
养老床位数 | 260 | … | _________ | … | _________ |
(2)若该养老中心建成后可提供养老床位200个,求的值;
(3)求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?
【答案】(1)20;;;10;180 (2)25 (3)260个;180个
【解析】
(1)根据双人间的房间数是单人间的2倍可得双人间是单人甲的房间数的两倍,再根据总需要100个房间数即可推出三人间和床位数的答案.
(2)规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100-3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;
(3)设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.
解:(1)双人间的房间数:;
三人间的房间数:=;
养老床位数:=;
三人间的房间数:=10;
养老床位数:=180.
(2)由题意得:,解得:,
∵,符合题意.
答:的值是25.
(3)设该养老中心建成后能提供养老床位个,
由题意得:,
∵,∴随的增大而减小.
当时,的最大值为(个),
当时,的最小值为(个).
答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.
【题目】某学校初一、初二年级各有500名学生,为了解两个年级的学生对消防安全知识的掌握情况,学校从初一、初二年级各随机抽取20名学生进行消防安全知识测试,满分100分,成绩整理分析过程如下,请补充完整:
(收集数据)
初一年级20名学生测试成绩统计如下:
78 56 74 81 95 75 87 70 75 90 75 79 86 60 54 80 66 69 83 97
初二年级20名学生测试成绩不低于80,但是低于90分的成绩如下:
83 86 81 87 80 81 82
(整理数据)按照如下分数段整理、描述两组样本数据:
成绩 | 0 | ||||
初一 | 2 | 3 | 7 | 5 | 3 |
初二 | 0 | 4 | 5 | 7 | 4 |
(分析数据)两组样本数据的平均数、中位数、众数、方差如下表所示:
年级 | 平均数 | 中位数 | 众数 | 方差 |
初一 | 76.5 | 76.5 | 132.5 | |
初二 | 79.2 | 74 | 100.4 |
(1)直接写出,的值;
(2)根据抽样调查数据,估计初一年级消防安全知识测试成绩在70分及其以上的大约有多少人?
(3)通过以上分析,你认为哪个年级对消防安全知识掌握得更好,并说明推断的合理性.