题目内容
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6 |
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.
(1)证明:连接DO;
∵∠ACB=90°,AC为直径,
∴EC为⊙O的切线;
又∵ED也为⊙O的切线,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴EB=ED,
∴EB=EC,即点E是边BC的中点;
(2)∵BC,BA分别是⊙O的切线和割线,
∴BC2=BD•BA,
∴(2EC)2=BD•BA,即BA•2
=36,
∴BA=3
,
在Rt△ABC中,由勾股定理得
AC=
=
=3
;
(3)△ABC是等腰直角三角形.
理由:∵四边形ODEC为正方形,
∴∠DOC=∠ACB=90°,即DO∥BC,
又∵点E是边BC的中点,
∴BC=2OD=AC,
∴△ABC是等腰直角三角形.
∵∠ACB=90°,AC为直径,
∴EC为⊙O的切线;
又∵ED也为⊙O的切线,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴EB=ED,
∴EB=EC,即点E是边BC的中点;
(2)∵BC,BA分别是⊙O的切线和割线,
∴BC2=BD•BA,
∴(2EC)2=BD•BA,即BA•2
6 |
∴BA=3
6 |
在Rt△ABC中,由勾股定理得
AC=
AB2-BC2 |
(3
|
2 |
(3)△ABC是等腰直角三角形.
理由:∵四边形ODEC为正方形,
∴∠DOC=∠ACB=90°,即DO∥BC,
又∵点E是边BC的中点,
∴BC=2OD=AC,
∴△ABC是等腰直角三角形.
练习册系列答案
相关题目