题目内容
如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.
(1)求证:AB=AC;
(2)当
=
时,①求tan∠ABE的值;②如果AE=
,求AC的值.
(1)求证:AB=AC;
(2)当
AB |
BC |
| ||
4 |
20 |
11 |
(1)证明:∵BE切⊙O于点B,
∴∠ABE=∠C.
∵∠EBC=2∠C,
即∠ABE+∠ABC=2∠C.
∴∠ABC=∠C.
∴AB=AC.
(2)①如图,连接AO,交BC于点F
∵AB=AC,∴
=
;
∴AO⊥BC,且BF=FC.
∵
=
∴
=
∴
=
;
设AB=
m,BF=2m,
由勾股定理,得AF=
=
=m;
∴tan∠ABE=tan∠ABF=
=
=
.
②在△EBA和△ECB中,
∵∠E=∠E,∠EBA=∠ECB,∴△EBA∽△ECB,
∴
=
;
∵
=
,
∴EB=
EA(※);
由切割线定理,得EB2=EA×EC=EA(EA+AC);
将(※)式代入上式,得
EA2=EA(EA+AC);
∵EA≠0,
∴AC=
EA=
×
=4.
∴∠ABE=∠C.
∵∠EBC=2∠C,
即∠ABE+∠ABC=2∠C.
∴∠ABC=∠C.
∴AB=AC.
(2)①如图,连接AO,交BC于点F
∵AB=AC,∴
AB |
AC |
∴AO⊥BC,且BF=FC.
∵
AB |
BC |
| ||
4 |
AB |
2BF |
| ||
4 |
AB |
BF |
| ||
2 |
设AB=
5 |
由勾股定理,得AF=
AB2-BF2 |
5m2-4m2 |
∴tan∠ABE=tan∠ABF=
AF |
BF |
m |
2m |
1 |
2 |
②在△EBA和△ECB中,
∵∠E=∠E,∠EBA=∠ECB,∴△EBA∽△ECB,
∴
EA |
EB |
AB |
BC |
∵
AB |
BC |
| ||
4 |
∴EB=
4 | ||
|
由切割线定理,得EB2=EA×EC=EA(EA+AC);
将(※)式代入上式,得
16 |
5 |
∵EA≠0,
∴AC=
11 |
5 |
11 |
5 |
20 |
11 |
练习册系列答案
相关题目