题目内容
已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是
的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.
(1)求证:P是△ACQ的外心;
(2)若tan∠ABC=
,CF=8,求CQ的长;
(3)求证:(FP+PQ)2=FP•FG.

![]() |
AD |
(1)求证:P是△ACQ的外心;
(2)若tan∠ABC=
3 |
4 |
(3)求证:(FP+PQ)2=FP•FG.

(1)证明:∵C是
的中点,∴
=
,
∴∠CAD=∠ABC
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠CAD+∠AQC=90°
又CE⊥AB,∴∠ABC+∠PCQ=90°
∴∠AQC=∠PCQ
∴在△PCQ中,PC=PQ,
∵CE⊥直径AB,∴
=
∴
=
∴∠CAD=∠ACE.
∴在△APC中,有PA=PC,
∴PA=PC=PQ
∴P是△ACQ的外心.
(2)∵CE⊥直径AB于F,
∴在Rt△BCF中,由tan∠ABC=
=
,CF=8,
得BF=
.
∴由勾股定理,得BC=
=
∵AB是⊙O的直径,
∴在Rt△ACB中,由tan∠ABC=
=
,BC=
,
∴AC=10,
易知Rt△ACB∽Rt△QCA,
∴AC2=CQ•BC,
∴CQ=
=
;
(3)证明:∵AB是⊙O的直径,∴∠ADB=90°
∴∠DAB+∠ABD=90°
又CF⊥AB,∴∠ABG+∠G=90°
∴∠DAB=∠G;
∴Rt△AFP∽Rt△GFB,
∴
=
,即AF•BF=FP•FG
易知Rt△ACF∽Rt△CBF,
∴CF2=AF•BF(或由射影定理得)
∴FC2=PF•FG,
由(1),知PC=PQ,∴FP+PQ=FP+PC=FC
∴(FP+PQ)2=FP•FG.
![]() |
AD |
![]() |
AC |
![]() |
CD |
∴∠CAD=∠ABC
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠CAD+∠AQC=90°
又CE⊥AB,∴∠ABC+∠PCQ=90°
∴∠AQC=∠PCQ
∴在△PCQ中,PC=PQ,
∵CE⊥直径AB,∴
![]() |
AC |
![]() |
AE |
∴
![]() |
AE |
![]() |
CD |
∴∠CAD=∠ACE.
∴在△APC中,有PA=PC,
∴PA=PC=PQ
∴P是△ACQ的外心.
(2)∵CE⊥直径AB于F,
∴在Rt△BCF中,由tan∠ABC=
CF |
BF |
3 |
4 |
得BF=
32 |
3 |
∴由勾股定理,得BC=
CF2+BF2 |
40 |
3 |
∵AB是⊙O的直径,
∴在Rt△ACB中,由tan∠ABC=
AC |
BC |
3 |
4 |
40 |
3 |
∴AC=10,
易知Rt△ACB∽Rt△QCA,
∴AC2=CQ•BC,
∴CQ=
AC2 |
BC |
15 |
2 |
(3)证明:∵AB是⊙O的直径,∴∠ADB=90°
∴∠DAB+∠ABD=90°
又CF⊥AB,∴∠ABG+∠G=90°
∴∠DAB=∠G;
∴Rt△AFP∽Rt△GFB,
∴
AF |
FG |
FP |
BF |
易知Rt△ACF∽Rt△CBF,
∴CF2=AF•BF(或由射影定理得)
∴FC2=PF•FG,
由(1),知PC=PQ,∴FP+PQ=FP+PC=FC
∴(FP+PQ)2=FP•FG.

练习册系列答案
相关题目