题目内容

△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是______.
此题应分两种情况说明:
(1)当△ABC为锐角三角形时,在Rt△ABD中,
BD=
AB2-AD2
=
152-122
=9,
在Rt△ACD中,
CD=
AC2-AD2
=
132-122
=5
∴BC=5+9=14
∴△ABC的周长为:15+13+14=42;

(2)当△ABC为钝角三角形时,
在Rt△ABD中,BD=
AB2-AD2
=
152-122
=9,
在Rt△ACD中,CD=
AC2-AD2
=
132-122
=5,
∴BC=9-5=4.
∴△ABC的周长为:15+13+4=32
∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.
综上所述,△ABC的周长是42或32.
故填:42或32.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网