题目内容
【题目】如图1,于点,.
(1)求证:;
(2)如图2,点从点出发,沿线段运动到点停止,连接、.则、、三个角之间具有怎样的数量关系(不考虑点与点,,重合的情况)?并说明理由.
【答案】(1)见详解;(2)当点P在A,D之间时,;当点P在C,D之间时,;当点P在C,F之间时,.
【解析】
(1)根据∠A+∠B=90°,∠A+∠1=90°,即可得到∠B=∠1,进而得出AB∥DE.
(2)分三种情况讨论:点P在A,D之间;点P在C,D之间;点P在C,F之间;分别过P作PG∥AB,利用平行线的性质,即可得到∠ABP,∠DEP,∠BPE三个角之间的数量关系.
解:(1)如图1,∵BC⊥AF于点C,
∴∠A+∠B=90°,
又∵∠A+∠1=90°,
∴∠B=∠1,
∴AB∥DE.
(2)如图2,当点P在A,D之间时,过P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;
∴;
如图所示,当点P在C,D之间时,过P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠BPG-∠EPG=∠ABP-∠DEP;
∴;
如图所示,当点P在C,F之间时,过P作PG∥AB,
∵AB∥DE,
∴PG∥DE,
∴∠ABP=∠GPB,∠DEP=∠GPE,
∴∠BPE=∠EPG-∠BPG=∠DEP-∠ABP.
∴.
练习册系列答案
相关题目