题目内容
【题目】某体育器材专卖柜经销A、B两种器材,A种器材每件进价350元,售价480元;B种器材每件进价200元,售价300元.
(1)该专卖柜计划用8000元去购进A、B两种器材若干件.
①若购进A种器材x件,B种器材y件,所获利润w元,请写出w与x之间满足的函数关系式;
②怎样购进才能使专卖柜经销这两种器材所获利润最大(其中A种器材不少于7件)?
(2)在“五·一”期间,该专卖柜对A、B两种器材进行如下优惠促销活动:
一次性购物总金额 | 优惠措施 |
不超过3000元 | 不优惠 |
超过3000元不超过4000元 | 售价打八折 |
超过4000元 | 售价打七折 |
促销活动期间:甲学校去该专卖柜购买A种器材付款2688元;乙学校去该专卖柜购买B种器材付款2100元,求丙学校决定一次性购买甲学校和乙学校购买的同样多的器材需付款多少元?
【答案】(1)①;②购进A器材8件,购进B器材26件才能使超市经销这两种器材所获利润最大,(2)丙学校付款3822元;
【解析】
(1)①由题意可得:
,
∴.
而,
将代入上式得:
;
②由知w是x的一次函数,随x的增大而减少,
又∵x是大于等于7的整数,且y也为整数,
∴当时,w最大,此时,
∴购进A器材8件,购进B器材26件才能使超市经销这两种器材所获利润最大.
(2)∵,
而,
∴乙学校去该专卖柜购买B种器材:(件),
甲学校去该专卖柜购买A种器材:(件).
∴丙学校一次去购买甲学校和乙学校购买的同样多的器材:
,
∴丙学校付款为:(元),
故丙学校付款3822元.
【题目】小云在学习过程中遇到一个函数.下面是小云对其探究的过程,请补充完整:
(1)当时,对于函数,即,当时,随的增大而 ,且;对于函数,当时,随的增大而 ,且;结合上述分析,进一步探究发现,对于函数,当时,随的增大而 .
(2)当时,对于函数,当时,与的几组对应值如下表:
0 | 1 | 2 | 3 | |||||
0 | 1 |
综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当时的函数的图象.
(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数的图象有两个交点,则的最大值是 .
【题目】某生产商存有1200千克产品,生产成本为150元/千克,售价为400元千克.因市场变化,准备低价一次性处理掉部分存货,所得货款全部用来生产产品,产品售价为200元/千克.经市场调研发现,产品存货的处理价格(元/千克)与处理数量(千克)满足一次函数关系(),且得到表中数据.
(千克) | (元/千克) |
200 | 350 |
400 | 300 |
(1)请求出处理价格(元千克)与处理数量(千克)之间的函数关系;
(2)若产品生产成本为100元千克,产品处理数量为多少千克时,生产产品数量最多,最多是多少?
(3)由于改进技术,产品的生产成本降低到了元/千克,设全部产品全部售出,所得总利润为(元),若时,满足随的增大而减小,求的取值范围