题目内容

如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为(  )
A.6B.13C.
13
D.2
13

过点A作等腰直角三角形BC边上的高AD,垂足为D,
所以点D也为BC的中点.
根据垂径定理可知OD垂直于BC.所以点A、O、D共线.
∵⊙O过B、C,
∴O在BC的垂直平分线上,
∵AB=AC,圆心O在等腰Rt△ABC的内部,
∴AD⊥BC,BD=DC=3,AO平分∠BAC,
∵∠BAC=90°,
∴∠ADB=90°,∠BAD=45°,
∴∠BAD=∠ABD=45°,
∴AD=BD=3,
∴OD=3-1=2,
由勾股定理得:OB=
DO2+BD2
=
13

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网