题目内容

【题目】小东根据学习函数的经验,对函数y= 的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y= 的自变量x的取值范围是
(2)表格是y与x的几组对应值.

x

﹣2

﹣1

0

1

2

3

4

y

2

4

2

m

表中m的值为
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数y= 的大致图象;
(4)结合函数图象,请写出函数y= 的一条性质:
(5)如果方程 =a有2个解,那么a的取值范围是

【答案】
(1)全体实数
(2)
(3)解:如图:


(4)①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点. 故答案为:①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点
(5)0<a<4
【解析】解:(1)不论x为何值,分母都不为0,

所以答案是:全体实数;

⑵当x=4时,m= =

所以答案是:

⑷①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点.

所以答案是:①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点.(5)由图象,得

0<a<4.

所以答案是:0<a<4.

【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网