题目内容

【题目】如图,在ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.

(1)求证:四边形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的长.

【答案】(1)见解析;(2)

【解析】试题分析:(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.

(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.

试题解析:(1)证明:∵CF=BE,

∴CF+EC=BE+EC.

EF=BC.

∵在ABCD中,AD∥BCAD=BC,

∴AD∥EFAD=EF.

∴四边形AEFD是平行四边形.

∵AE⊥BC,

∴∠AEF=90°.

∴四边形AEFD是矩形;

(2)∵四边形AEFD是矩形,DE=8,

∴AF=DE=8.

∵AB=6,BF=10,

∴AB2+AF2=62+82=100=BF2

∴∠BAF=90°.

∵AE⊥BF,

∴△ABF的面积=ABAF=BFAE

AE=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网