题目内容

【题目】已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,﹣3),C(0,﹣3)
(1)求抛物线的表达式;
(2)设点D是抛物线上一点,且点D的横坐标为﹣2,求△AOD的面积.

【答案】
(1)解:把A(3,0),B(2,﹣3),C(0,﹣3)代入y=ax2+bx+c得:

解得:

则抛物线解析式为y=x2﹣2x﹣3


(2)解:把x=﹣2代入抛物线解析式得:y=5,即D(﹣2,5),

∵A(3,0),即OA=3,

∴SAOD= ×3×5=


【解析】(1)把A,B,C三点坐标代入解析式求出a,b,c的值,即可求出函数解析式;(2)把x=﹣2代入抛物线解析式求出y的值,确定出D坐标,由OA为底,D纵坐标绝对值为高,求出三角形AOD面积即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网