题目内容
【题目】在正方形中,点是直线上一点.连接,将线段绕点顺时针旋转,得到线段,连接.
(1)如图1.若点在线段的延长线上过点作于.与对角线交于点.
①请仔细阅读题目,根据题意在图上补全图形;②求证:.
(2)若点在射线上,直接写出,,三条线段之间的数量关系(不必写过程).
【答案】(1)①见解析;②见解析;(2)EC=(CD-PC)或EC=(CD+PC)
【解析】
(1)①构建题意画出图形即可;②想办法证明△APB≌△PEH即可;
(2)结论:当点P在线段BC上时:.当点P在线段BC的延长线上时:,构造全等三角形即可解决问题.
解:(1)①补全图形如图所示.
②证明:线段绕点顺时针能转得到线段,
,
四边形是正方形,
,
于,
,,
,
.
,
,
∴;
(2)当点P在线段BC上时:.
理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.
易证△PCE≌△AMP,可得EC=PM,
∵CD-PC=BC-PC=PB,
∴EC=PM=PB=(CD-PC),
当点P在线段BC的延长线上时:.
理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.
易证△PCE≌△AMP,可得EC=PM,
∵CD+PC=BC+PC=PB,
∴EC=PM=PB=(CD+PC).
故答案为EC=(CD-PC)或EC=(CD+PC).
练习册系列答案
相关题目