题目内容

已知抛物线的顶点坐标为(
5
2
,-
27
16
)
,且经过点C(1,0),若此抛物线与x轴的另一交点为点B,与y轴的交点为点A,设P、Q分别为AB、OB边上的动点,它们同时分别从点A、O向B点匀速运动,速度均为每秒1个单位,设P、Q移动时间为t(0≤t≤4)
(1)求此抛物线的解析式并求出P点的坐标(用t表示);
(2)当△OPQ面积最大时求△OBP的面积;
(3)当t为何值时,△OPQ为直角三角形?
(4)△OPQ是否可能为等边三角形?若可能请求出t的值;若不可能请说明理由,并改变点Q的运动速度,使△OPQ为等边三角形,求出此时Q点运动的速度和此时t的值.
(1)设抛物线的解析式为:y=a(x-
5
2
2-
27
16
,代入点(1,0),得:a=
3
4

∴y=
3
4
(x-
5
2
2-
27
16

令y=0得:x1=4,x2=1,∴B(4,0).
令x=0得:y=3,∴A(0,3),AB=5.
如右图,过点P作PM⊥y轴,垂足为点M,则:
AM
AO
=
PM
OB
=
AP
AB
,得:
AM
3
=
PM
4
=
t
5

∴AM=
3
5
t,PM=
4
5
t
∴P(
4
5
t,3-
3
5
t).

(2)如图,过点P作PN⊥x轴,垂足为点N,
S△OPQ=
1
2
OQ•PN=
1
2
t•(3-
3
5
t)=
3
2
t-
3
10
t2=-
3
10
(t-
5
2
2+
15
8

∴当t=
5
2
时,S△OPQ最大=
15
8

此时OP为AB边上的中线
∴S△OBP=
1
2
S△AOB=
1
2
×
1
2
×3×4=3.

(3)若∠OQP=90°,则
BP
AB
=
BQ
BO

5-t
5
=
4-t
4
,得t=0(舍去).
若∠OPQ=90°,则OP2+PQ2=OQ2
∴(3-
3
5
t)2+(
4
5
t)2+(3-
3
5
t)2+(
1
5
t)2=t2
解得:t1=3,t2=15(舍去).
当t=3时,△OPQ为直角三角形.

(4)∵OP2=(3-
3
5
t)2+(
4
5
t)2,PQ2=(3-
3
5
t)2+(
1
5
t)2
∴OP≠PQ,
∴△OPQ不可能是等边三角形.
设Q点的速度为每秒k个单位时,△OPQ为等边三角形
∴kt=2•
4
5
t,得 k=
8
5

∵PN=
3
2
OP=
3
2
8
5
t=
4
3
5
t
∴3-
3
5
t=
4
3
5
t,得t=
20
3
-15
13
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网