题目内容

【题目】学校准备购进一批节能灯,已知1A型节能灯和3B型节能灯共需26元;3A型节能灯和2B型节能灯共需29元。

1)求1A型节能灯和1B型节能灯的售价各是多少元?

2)学校准备购进这两种型号的节能灯共80只,并且A型节能灯的数量不多于B型节能灯的3倍,问如何购买最省钱,说明理由。

【答案】11A型节能灯的售价为5元,1B型节能灯的售价为7元;(2)购买60A型节能灯,20B型节能灯最省钱,理由见解析

【解析】

1)设一只A型节能灯的售价是x元,一只B型节能灯的售价y元,根据题意列出方程组,求出方程组的解即可;

2)设A型节能灯买了a只,则B型节能灯买了(80-a)只,共花费w元,根据题意列出不等式组,求出不等式组的解集即可.

解(1)设1A型节能灯的售价为x元,1B型节能灯的售价为y

由题意得:

解得:

答:1A型节能灯的售价为5元,1B型节能灯的售价为7

2)设购买A型节能灯a个,则购买B型节能灯(80-a)个,总费用为w

由题意得:a≤380-a

解得a≤60

又∵w=5a+780-a=-2a+560

wa的增大而减小

∴当a取最大值60时,w有最小值

w=-2×60+560=440

即购买60A型节能灯,20B型节能灯最省钱

练习册系列答案
相关题目

【题目】某旅行社推出一条成本价位500/人的省内旅游线路,游客人数y(人/月)与旅游报价x(元/人)之间的关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800/人~1200/人之间.

(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;

(2)求经营这条旅游线路每月所需要的最低成本;

(3)档这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?

【答案】(1)取值范围为1100元/人~1200元/人之间;(2)50000;(3)x=900时,w最大=160000

【解析】试题分析:(1)根据题意列不等式求解可;

(2)根据报价减去成本可得到函数的解析式,根据一次函数的图像求解即可;

(3)根据利润等于人次乘以价格即可得到函数的解析式,然后根据二次函数的最值求解即可.

试题解析(1)∵由题意得时,即

∴解得

即要将该旅游线路每月游客人数控制在200人以内,该旅游线路报价的取值范围为1100元/人~1200元/人之间;

(2),∴

,∴当时,z最低,即

(3)利润

时,.

型】解答
束】
23

【题目】已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点CCEAB于点E,点FAB上一点,且EF=EB,连接DF

1)求证:CD=CF

2)连接DF,交AC于点G,求证:DGCADC

3)若点H为线段DG上一点,连接AH,若∠ADC=2HAGAD=3DC=2,求的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网