题目内容
【题目】如图,在平面直角坐标系中,点为坐标原点,将含30°角的放在第一象限,其中30°角的对边长为1,斜边的端点,分别在轴的正半轴,轴的正半轴上滑动,连接,则线段的长的最大值是( )
A.2B.C.D.
【答案】A
【解析】
取AB的中点F,连接CF、OF.首先求出OF=FC=1,根据三角形的三边关系可知:OC≤OF+OC,推出当O、F、C共线时,OC的值最大,最大值为2.
解:取AB的中点F,连接CF、OF.
在Rt△ABC中,∵∠ACB=90°,∠BAC=30°,BC=1,
∴AB=2BC=2,
∵∠AOB=90°,AF=FB,
∴OF=FC=AB=1,
∵OC≤OF+CF,
∴当O、F、C共线时,OC的值最大,最大值为2.
故选:A.
练习册系列答案
相关题目
【题目】学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.
组别 | 课前预习时间 | 频数(人数) | 频率 |
1 | 2 | ||
2 | 0.10 | ||
3 | 16 | 0.32 | |
4 | |||
5 | 3 |
请根据图表中的信息,回答下列问题:
(1)本次调查的样本容量为 ,表中的 , , ;
(2)试计算第4组人数所对应的扇形圆心角的度数;
(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于的学生人数.