题目内容
【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=.
(1)求b的值;
(2)点C以每秒1个单位长度的速度从O点出发沿x轴向点B运动,点D以每秒2个单位长度的速度从A点出发沿y轴向点O运动,C,D两点同时出发,当点D运动到点O时,C,D两点同时停止运动.连接CD,设点C的运动时间为t秒,△CDO的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)条件下,过点C作CE⊥CD交AB于点E,过点D作DF∥x轴交AB于点F,过点F作FH⊥CE,垂足为H.在CH上取点M,使得MH:HE=8:33,连接FM,若∠FMH=∠FEH,求t的值.
【答案】(1)b=9;(2)S=﹣t2+;(3)t=1
【解析】
(1)由直线解析式可得A、B两点坐标,根据△AOB的面积列方程解出b的值.
(2)分别用t表示OC和OD的长即可得到S与t的表达式.
(3)首先根据题意画出示意图,然后根据所给定的线段等量关系与角度等量关系推导出∠FEM的正切值,过点E作GP⊥OB于P交DF的延长线于点G,可以推证∠DEG=∠FEM,于是利用∠DEG的正切值列出比例方程,最后解出t的值.
解:(1)如图1,
∵直线y=﹣x+b交y轴于点A,交x轴于点B,
∴A(0,b),B(b,0)
∴OA=OB=b,
∴S△AOB==.
∴b=9或-9(不符合与y轴的交点,舍去负值).
(2)如图2,
由题意知OC=t,AD=2t,则OD=OA﹣AD=9﹣2t,
∴S=ODOC=t(9﹣2t)=﹣t2+.
(3)∵=,
∴设MH=8k,HE=33k,
如图3,在HE上截取HN=MH=8k,连接FN,
则EN=EH﹣HN=25k,
∵FH⊥CE于H,
∴FM=FN,∠FME=∠FNM,
∵∠FME=∠FEM,
∴设∠FEM=2α,∠FME=3α,
∴∠FNM=3α,
∵∠FNM=∠NFE+∠FEN,
∴∠NFE=∠FNM﹣∠FEM=3α﹣2α=α,
在FE上取一点Q,连接NQ,使NQ=NE=25k,
则∠NQE=∠FEM=2α,
∵∠NQE=∠NFE+∠QNF=α+∠QNF,
∴∠NF=α=∠NFE,
∴FQ=NQ=25k,
作NR⊥QE于R,则QR=RE=n,
∴FE=FQ+QE=25k+2n,
∵cos∠FEH=cos2α==,
∴=,
解得n=15k,
∴QR=RE=15k,
∴NR==20k,
∴tan2α==.
过点E作GP⊥OB于P交DF的延长线于点G,
∴∠CPE=∠BPE=90°,
∵OA=OB=9,
∴∠OAB=∠OBA=45°,
∴∠PEB=45°,
∴BP=PE,
∵DF∥OB,
∴∠ODF=∠ADF=90°,
∴四边形DOPG为矩形,
∴GP=OD,DG=OP,
作CT⊥OB交AB于T,交DF于K,连接DT,
则ODKC为矩形,△CTB为等腰直角三角形,
∴DK=OC=t,CK=OD,CT=CB,
∵∠FDA=90°,∠FAF=45°,
∴△ADF为等腰直角三角形,
∴DF=AD=2OC=2t,
∴K为DF中点,
∴T为AF中点,
∴△DTF为等腰直角三角形,
∴∠DTK=∠FTK=45°,
∵DC⊥CE,
∴∠DCT+∠TCE=∠TCE+∠BCE=90°,
∴∠DCT=∠ECB,
在△DCT和△ECB中:
∴△DCT≌△ECB(ASA),
∴CD=CE,
∴△DCE为等腰直角三角形,
∴∠CED=45°,
∵∠DCO+∠ECP=∠DCO+∠ODC=90°,
∴∠ODC=∠ECP,
在△DOC和△CPE中:
∴△DOC≌△CPE(AAS),
∴BP=PE=OC=t,
∴DG=OP=OB﹣PB=9﹣t,
∴FG=DG﹣DF=9﹣3t,
∵∠GFE=∠AFD=45°,∠GEF=∠BEP=45°,
∴DE=GF=9﹣3t,
∵∠DEG=∠FEG+∠FED=45°+∠FED=∠DEC+∠FED=∠FEM=2α,
∴tan∠DEG===,
解得t=1.