题目内容
【题目】如图,现有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN丁点Q,连接CM.
(1)求证:PM=PN;
(2)当P,A重合时,求MN的值;
(3)若△PQM的面积为S,求S的取值范围.
【答案】(1)见解析;(2)2;(3)4≤S≤5
【解析】
(1)由平行线的性质得到∠PMN=∠MNC,由折叠的性质得到∠MNC=∠PNM,从而得到∠PMN=∠PNM即可解决问题;
(2)点P与点A重合时,设BN=x,表示出AN=NC=8-x,利用勾股定理列出方程求解得x的值,进而用勾股定理求得MN;
(3)当MN过D点时,求得四边形CMPN的最小面积,进而得S的最小值,当P与A重合时,S的值最大,求得最大值即可.
解(1)如图1中,
∵四边形ABCD是矩形,
∴PM∥CN,
∴∠PMN=∠MNC,
由折叠可得∠MNC=∠PNM,
∴∠PMN=∠PNM,
∴PM=PN;
(2)解:点P与点A重合时,如图2中,
设BN=x,则AN=NC=8﹣x,
在Rt△ABN中,AB2+BN2=AN2,
即42+x2=(8﹣x)2,
解得x=3,
∴CN=8﹣3=5,AC===4,
∴CQ=AC=2,
∴QN===,
∴MN=2QN=2;
(3)解:当MN过点D时,如图3所示,此时,CN最短,四边形CMPN的面积最小,则S最小为S=S菱形CMPN=×4×4=4,
当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=×5×4=5,
∴4≤S≤5.
练习册系列答案
相关题目