题目内容

【题目】如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2 , 再依次连接△A2B2C2的三边中点得△A3B3C3 , …,则△A5B5C5的周长为

【答案】1
【解析】解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,
∴以此类推:△A5B5C5的周长为△A1B1C1的周长的
∴则△A5B5C5的周长为(7+4+5)÷16=1.
所以答案是:1
【考点精析】本题主要考查了三角形中位线定理的相关知识点,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网