题目内容
【题目】如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是 .
【答案】25
【解析】∵在Rt△ABC中,AB2+BC2=AC2 ,
∵AB=BC,AC=10.
∴2AB2=200,
∴AB=BC=10,
设EF=x,则AF=10﹣x
∵EF∥BC,
∴△AFE∽△ABC
∴=,即=,
∴x=5,
∴EF=5,
∴此正方形的面积为5×5=25.
所以答案是25.
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目