题目内容
【题目】如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.
【答案】(1)60°;(2)不变化,∠APB=2∠ADB ,理由详见解析;(3)∠ABC=30°
【解析】
(1)根据平行线的性质与角平分线的性质即可求解;(2)根据平行线的性质与角平分线的性质即可求得∠APB=2∠ADB(3)根据三角形的内角和即可求解.
解:(1)∵AM∥BN,
∴∠A+∠ABN=180°,
∵∠A=60°
∴∠ABN=120°
∵BC、BD分别平分∠ABP和∠PBN,
∴∠CBP=∠ABP, ∠DBP=∠NBP,
∴∠CBD=∠CBP +∠DBP=∠ABN=60°
(2)不变化,∠APB=2∠ADB,理由:
∵AM∥BN,
∴∠APB=∠PBN
∠ADB=∠DBN
又∵BD平分∠PBN,
∴∠PBN =2∠DBN
∴∠APB=2∠ADB
(3)在△ABC中,∠A+∠ACB+∠ABC=180°,
在△ABD中,∠A+∠ABD+∠ADB=180°,
∵∠ACB=∠ABD,∴∠ABC=∠ADB
∵AD∥BN,∠A=60°,
∴∠ABN=120°,∠ADB=∠DBN=∠ABC,
由(1)知∠CBD=60°,
∴∠ABC=(∠ABN-∠CBD)=30°
【题目】某移动通信公司推出了如下两种移动电话计费方式,
月使用费/元 | 主叫限定时间/分钟 | 主叫超时费(元/分钟) | |
方式一 | 30 | 600 | 0.20 |
方式二 | 50 | 600 | 0.25 |
说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)
(1)请根据题意完成如表的填空;
月主叫时间500分钟 | 月主叫时间800分钟 | |
方式一收费/元 |
| 130 |
方式二收费/元 | 50 |
|
(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;
(3)请计算说明选择哪种计费方式更省钱.
【题目】小龙在学校组织的社会调查活动中负贵了解他所居住的小区450户居民的家庭收入情况从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频分布直方图。
分组 | 频数 | 百分比 |
600≤<800 | 2 | 5% |
800≤<1000 | 6 | 15% |
1000≤<1200 | 45% | |
9 | 22.5% | |
1400≤<1600 | ||
1600≤<1800 | 2 | |
合计 | 40 | 100% |
根据以上提供的信息,解答下列问题
(1)补全频数分布表
(2)补全频数分布直方图
(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户