题目内容
【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣ +bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣ +bx+c的图象分别交于B,C两点,点B在第一象限.
(1)求二次函数y=﹣ +bx+c的表达式;
(2)连接AB,求AB的长;
(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.
【答案】
(1)
解:当x=0时,y=c,即(0,c).
由当x=0和x=5时所对应的函数值相等,得(5,c).
将(5,c)(1,0)代入函数解析式,得
,
解得 .
故抛物线的解析式为y=﹣ x2+ x﹣2
(2)
解:联立抛物线与直线,得
,
解得 , ,
即B(2,1),C(5,﹣2).
由勾股定理,得
AB= =
(3)
解:如图:
,
四边形ABCN是平行四边形,
证明:∵M是AC的中点,
∴AM=CM.
∵点B绕点M旋转180°得到点N,
∴BM=MN,
∴四边形ABCN是平行四边形
【解析】(1)根据当x=0和x=5时所对应的函数值相等,可得(5,c),根据待定系数法,可得函数解析式;(2)联立抛物线与直线,可得方程组,根据解方程组,可得B、C点坐标,根据勾股定理,可得AB的长;(3)根据线段中点的性质,可得M点的坐标,根据旋转的性质,可得MN与BM的关系,根据平行四边形的判定,可得答案.
【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.