题目内容

【题目】如图,直线轴交于点,与轴交于点,且与双曲线的一个交点为,将直线轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点轴的平行线,与新函数交于另一点,与双曲线交于点

1)若点的横坐标为,求的面积;(用含的式子表示)

2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.

【答案】1;(2)不能成为平行四边形,理由见解析

【解析】

1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;
2)当PBM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点PCD的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.

解:(1在直线上,

的图像上,

的面积为

2)当点中点时,其坐标为

直线轴下方的部分沿轴翻折得表示的函数表达式是:

不能互相平分,

四边形不能成为平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网