题目内容

【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.

(1)请直接写出yx之间的函数关系式;

(2)如果每天获得160元的利润,销售单价为多少元?

(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?

【答案】(1)yx之间的函数关系式为y=﹣80x+560;(2)如果每天获得160元的利润,销售单价为4元;(3)当销售单价定为5元时,每天的利润最大,最大利润是240元.

【解析】1)设yx的函数关系式为y=kx+b,将x=3.5,y=280;x=5.5,y=120分别代入求出k、b的值即可得;

(2)根据利润=(售价-成本)×销售量-其他费用列出方程进行求解即可得;

(3)根据利润=(售价-成本)×销售量-其他费用列出函数关系式,然后利用二次函数的性质进行解答即可得.

(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,

,解得

yx之间的函数关系式为y=﹣80x+560;

(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,

整理,得x2﹣10x+24=0,解得x1=4,x2=6,

3.5≤x≤5.5,x=4,

答:如果每天获得160元的利润,销售单价为4元;

(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80

=﹣80x2+800x﹣1760

=﹣80(x﹣5)2+240,

3.5≤x≤5.5,∴当x=5时,w有最大值为240,

故当销售单价定为5元时,每天的利润最大,最大利润是240元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网