题目内容

【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O,与斜边AB交于点D、E为BC边的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)填空:①若∠B=30°,AC=2 ,则DE=; ②当∠B=°时,以O,D,E,C为顶点的四边形是正方形.

【答案】
(1)证明:连接OD.

∵AC是直径,

∴∠ADC=90°,

∴∠CDB=90°,

又∵E为BC边的中点,

∴DE为直角△DCB斜边的中线,

∴DE=CE=

∴∠DCE=∠CDE,

∵OC=OD,

∴∠OCD=∠ODC,

∴∠ODC+∠CDE=∠OCD+∠DCE=∠ACB=90°,

∴∠ODE=90°

∴DE是⊙O的切线.


(2)3;45
【解析】(2)解:①∵∠B=30°,AC=2 ,∠BCA=90°,

∴tan30°= = =

解得:BC=6,

则DE= BC=3;

故答案为:3;②当∠B=45°时,四边形ODEC是正方形,

∵∠ACB=90°,

∴∠A=45°,

∵OA=OD,

∴∠ADO=45°,

∴∠AOD=90°,

∴∠DOC=90°,

∵∠ODE=90°,

∴四边形DECO是矩形,

∵OD=OC,

∴矩形DECO是正方形.

故答案为:45.

(1)运用垂径定理、直角三角形的性质证明∠ODE=90°即可解决问题;(2)①直接利用锐角三角函数关系得出BC的长,再利用直角三角形的性质得出DE的长;

②当∠B=45°时,四边形ODEC是正方形,由等腰三角形的性质,得到∠ODA=∠A=45°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网