题目内容
【题目】在Rt△ABC与Rt△ABD中,,,AC、BD相交于点G,过点A作交CB的延长线于点E,过点B作交DA的延长线于点F,AE、BF相交于点H.
(1)证明:ΔABD≌△BAC.
(2)证明:四边形AHBG是菱形.
(3)若AB=BC,证明四边形AHBG是正方形.
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)由“HL”可证明Rt△ABC≌Rt△BAD(HL);
(2)由已知可得四边形AHBG是平行四边形,由(1)可知,可得,从而得到平行四边形AHBG是菱形.
(3)根据有一个角是直角的菱形是正方形,进行判断即可.
解:(1),,
∴Rt△ABC≌Rt△BAD(HL).
(2),,
∴四边形AHBG是平行四边形.
∵△ABC≌Rt△BAD,
,
,
∴平行四边形AHBG是菱形.
(3),,
是等腰直角三角形,
,
又∵△ABC≌△BAD,
,
,
∴菱形AHBG是正方形.
练习册系列答案
相关题目