题目内容

【题目】如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为( )
A.6
B.6
C.2
D.3

【答案】D
【解析】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,
∴∠CDE=∠BDE=90°,
∵BD=CD,BC=6,
∴BD=ED=3,
即△EDB是等腰直角三角形,
∴BE= BD= ×3=3
故选D.
根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网