题目内容
【题目】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:
①abc>0;
②b2﹣4ac>0;
③9a﹣3b+c=0;
④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;
⑤5a﹣2b+c<0.
其中正确的个数有( )
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】根据二次函数的性质一一判断即可.
∵抛物线对称轴x=-1,经过(1,0),
∴-=-1,a+b+c=0,
∴b=2a,c=-3a,
∵a>0,
∴b>0,c<0,
∴abc<0,故①错误,
∵抛物线与x轴有交点,
∴b2-4ac>0,故②正确,
∵抛物线与x轴交于(-3,0),
∴9a-3b+c=0,故③正确,
∵点(-0.5,y1),(-2,y2)均在抛物线上,
-1.5>-2,
则y1<y2;故④错误,
∵5a-2b+c=5a-4a-3a=-2a<0,故⑤正确,
故选:B.
练习册系列答案
相关题目