题目内容
【题目】 为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有两种型号的健身器可供选择.
(1)劲松公司2015年每套型健身器的售价为万元,经过连续两年降价,2017年每套售价为 万元,求每套型健身器年平均下降率 ;
(2)2017年市政府经过招标,决定年内采购并安装劲松公司两种型号的健身器材共套,采购专项费总计不超过万元,采购合同规定:每套型健身器售价为万元,每套型健身器售价我 万元.
①型健身器最多可购买多少套?
②安装完成后,若每套型和型健身器一年的养护费分别是购买价的 和 .市政府计划支出 万元进行养护.问该计划支出能否满足一年的养护需要?
【答案】(1)每套A型健身器材年平均下降率n为20%;
(2)①A型健身器材最多可购买40套;②该计划支出不能满足养护的需要.
【解析】
试题分析:(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.
(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;
②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.
试题解析:(1)依题意得:2.5(1﹣n)2=1.6,
则(1﹣n)2=0.64,
所以1﹣n=±0.8,
所以n1=0.2=20%,n2=1.8(不合题意,舍去).
答:每套A型健身器材年平均下降率n为20%;
(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,
依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,
整理,得
1.6m+96﹣1.2m≤1.2,
解得m≤40,
即A型健身器材最多可购买40套;
②设总的养护费用是y元,则
y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),
∴y=﹣0.1m+14.4.
∵﹣0.1<0,
∴y随m的增大而减小,
∴m=40时,y最小.
∵m=40时,y最小值=﹣01×40+14.4=10.4(万元).
又∵10万元<10.4万元,
∴该计划支出不能满足养护的需要.