题目内容
如图,已知四边形ABCD是边长为2的正方形,以对角线BD为边作正三角形BDE,过E作DA 的延长线的垂线EF,垂足为F。
(1)找出图中与EF相等的线段,并证明你的结论;
(2)求AF的长。
(1)找出图中与EF相等的线段,并证明你的结论;
(2)求AF的长。
(1)AF=EF;
理由如下:连接AE,
∵△DBE是正三角形,
∴EB=ED.
∵AD=AB,AE=AE,
∴△ABE≌△ADE.
∴∠BEA=∠DEA=×60°=30°.
∵∠EDA=∠EDB-∠ADB=60°-45°=15°,
∴∠EAF=∠AED+∠ADE=45°.
∵EF⊥AD,
∴△EFA是等腰直角三角形.
∴EF=AF.
(2)设AF=x,
∵AD=2,BD=2=ED,FD=2+x,
在Rt△EFD中,
由勾股定理得EF2+FD2=ED2
即x2+(2+x)2=(2)2
∴x=-1(x=--1舍去),∴AF=-1.
理由如下:连接AE,
∵△DBE是正三角形,
∴EB=ED.
∵AD=AB,AE=AE,
∴△ABE≌△ADE.
∴∠BEA=∠DEA=×60°=30°.
∵∠EDA=∠EDB-∠ADB=60°-45°=15°,
∴∠EAF=∠AED+∠ADE=45°.
∵EF⊥AD,
∴△EFA是等腰直角三角形.
∴EF=AF.
(2)设AF=x,
∵AD=2,BD=2=ED,FD=2+x,
在Rt△EFD中,
由勾股定理得EF2+FD2=ED2
即x2+(2+x)2=(2)2
∴x=-1(x=--1舍去),∴AF=-1.
(1)连接AE,首先证明△ABE≌△ADE得到∠BEA=30°,再根据题意∠EAF=∠AED+∠ADE=45°,又知EF⊥AD,故可得AF=EF,
(2)设AF=x,由勾股定理得EF2+FD2=ED2,列出等量关系式,解得x.
(2)设AF=x,由勾股定理得EF2+FD2=ED2,列出等量关系式,解得x.
练习册系列答案
相关题目