题目内容
【题目】如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,
(1)求证:AE=CE;
(2)求证:四边形ABDF是平行四边形;
(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为 .
【答案】(1)见解析;(2)见解析;(3)6
【解析】
(1)根据平行线的性质得出,根据全等三角形的判定得出,根据全等三角形的性质得出即可;
(2)根据平行四边形的判定推出即可;
(3)求出高和,再根据面积公式求出即可.
解:(1)证明:∵点E是BD的中点,
∴BE=DE,
∵AD∥BC,
∴∠ADE=∠CBE,
在△ADE和△CBE中
∴△ADE≌△CBE(ASA),
∴AE=CE;
(2)证明:∵AE=CE,BE=DE,
∴四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵DF=CD,
∴DF=AB,
即DF=AB,DF∥AB,
∴四边形ABDF是平行四边形;
(3)解:过C作CH⊥BD于H,过D作DQ⊥AF于Q,
∵四边形ABCD和四边形ABDF是平行四边形,AB=2,AF=4,∠F=30°,
∴DF=AB=2,CD=AB=2,BD=AF=4,BD∥AF,
∴∠BDC=∠F=30°,
∴DQ=DF==1,CH=DC==1,
∴四边形ABCF的面积S=S平行四边形BDFA+S△BDC=AF×DQ+=4×1+=6,
故答案为:6.
练习册系列答案
相关题目