题目内容
【题目】如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.
(1)求证:四边形OCED为矩形;
(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.
【答案】(1)证明见解析;(2).
【解析】
(1)由DE∥AC,CE∥BD可得四边形OCED为平行四边形,又AC⊥BD从而得四边形OCED为矩形;
(2)过点O作OH⊥BC,垂足为H,由已知可得三角形OBC、OCD的面积,BC的长,由面积法可得OH的长,从而可得三角形OCF的面积,三角形OCD与三角形OCF的和即为所求.
(1)∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD.∴∠DOC=90°.∴四边形OCED为矩形.
(2)∵菱形ABCD,∴AC与BD互相垂直平分于点O,∴OD=OB=BD=6,OA=OC=AC=8,∴CF=CO=8,S△BOC=S△DOC==24,在Rt△OBC中,BC==10,.作OH⊥BC于点H,则有BC·OH=24,∴OH=,∴S△COF=CF·OH=.∴S四边形OFCD=S△DOC+S△OCF=.
练习册系列答案
相关题目