题目内容

【题目】如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(10),以O1为圆心,O1O为半径画半圆,交直线l于点P1,交x轴正半轴于点O2,由弦P1O2围成的弓形面积记为S1,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,由弦P2O3和围成的弓形面积记为S2,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4,由弦P3O4围成的弓形面积记为S3按此做法进行下去,其中S2018的面积为__________

【答案】

【解析】

连接P1O1,根据直线的函数解析式与特殊角的三角函数值得到∠P1OO1=30°,则∠P1O1O2=60°,再根据扇形面积公式与等边三角形的面积公式求得S1S2S3S4找到规律,然后求解S2018即可.

解:如图,连接P1O1

∵直线l的函数表达式为y=x

tan P1OO1=

∴∠P1OO1=30°,

∴∠P1O1O2=60°,

S1==

同理可得S2=

S3=

S4==

······

Sn=

则当n=2018时,

S2018=.

故答案为:.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网