题目内容
【题目】如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.
(1)求证AE=BF;
(2)若正方形的边长是5,BE=2,求AF的长.
【答案】(1)证明见解析;(2).
【解析】
(1)根据正方形的性质得AB=BC,再根据同角的余角相等得∠BAE=∠EBH,再利用“角角边”证明△ABE≌△BCF,根据全等三角形的对应边相等得AE=BF;
(2)根据全等三角形的对应边相等得BE=CF,再利用勾股定理计算即可得出结论.
(1)∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
∴∠BAE+∠AEB=90°.
∵BH⊥AE,∴∠BHE=90°.
∴∠AEB+∠EBH=90°.
∴∠BAE=∠EBH.
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA).
∴AE=BF.
(2)由(1)得△ABE≌△BCF,
∴BE=CF.
∵正方形的边长是5,BE=2,
∴DF=CD-CF=CD-BE=5-2=3.
在Rt△ADF中,由勾股定理得:AF===.
练习册系列答案
相关题目