题目内容

【题目】如图,正方形ABCD中,EBC上的一点,连接AE,过B点作BHAE,垂足为点H,延长BHCD于点F,连接AF.

(1)求证AE=BF;

(2)若正方形的边长是5,BE=2,求AF的长.

【答案】(1)证明见解析;(2).

【解析】

(1)根据正方形的性质得ABBC,再根据同角的余角相等得∠BAE=∠EBH,再利用“角角边”证明△ABE≌△BCF,根据全等三角形的对应边相等得AEBF;

(2)根据全等三角形的对应边相等得BECF,再利用勾股定理计算即可得出结论.

(1)∵四边形ABCD是正方形,

AB=BC,ABE=BCF=90°.

∴∠BAE+AEB=90°.

BHAE,∴∠BHE=90°.

∴∠AEB+EBH=90°.

∴∠BAE=EBH.

在△ABE和△BCF中,

∴△ABE≌△BCF(ASA).

AE=BF.

(2)(1)得△ABE≌△BCF,

BE=CF.

∵正方形的边长是5,BE=2,

DF=CD-CF=CD-BE=5-2=3.

RtADF中,由勾股定理得:AF=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网