题目内容
【题目】经过顶点的一条直线,.分别是直线上两点,且.
(1)若直线经过的内部,且在射线上,请解决下面两个问题:
①如图1,若,,
则 ; (填“”,“”或“”);
②如图2,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线经过的外部,,请提出三条线段数量关系的合理猜想(不要求证明).
【答案】(1)①;;
②所填的条件是:.
证明:在中,.
,.
又,.
又,,
.
,.
又,.
(2).
【解析】
(1)①由∠BCA=90°,∠α=90°可得∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,可推得∠CBE=∠ACD,且已知CA=CB,∠BEC=∠CFA,所以△BEC≌△CDA,可得BE=CF,EC=AF;又因为EF=CF-CE,所以EF=|BE-AF|;
②只有满足△BEC≌△CDA,才有①中的结论,即∠BCE=∠CAF,∠CBE=∠FCA;由三角形内角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠α+∠BCA=180°.
(2)只要通过条件证明△BEC≌△CFA(可通过ASA证得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF.
练习册系列答案
相关题目