题目内容
【题目】已知,如图,AB∥CD.
(1)则图①中的∠1+∠2的度数是180°.
(2)则图②中的∠1+∠2+∠3的度数是多少?
解:如图⑤,过点E作EF∥AB(为了解题的需要,添加的线叫做辅助线,辅助线常常画成虚线).
所以∠1+∠AEF=180°.
因为AB∥CD,
所以CD∥EF.
所以∠FEC+∠3=180°.
所以∠1+∠2+∠3=360°.
认真阅读(2)的解题过程,求图③中∠1+∠2+∠3+∠4的度数是多少?探究图④中∠1+∠2+∠3+∠4+…+∠n的度数是多少?
【答案】540°;(n-1)180°.
【解析】
分别过C,D作CE∥AB,DF∥AB,则CE∥DF∥CD,根据平行线的性质即可得到结论;根据角的个数n与角的和之间的关系是(n-1)180°,于是得到∠1+∠2+∠3+∠4+…+∠n的度数=(n-1)180°.
如图③,分别过E,F作GE∥AB,HF∥AB,则AB∥EG∥FH∥CD,
∴∠A+∠AEG=∠GEF+∠HFE=∠C+∠CFH=180°,
∴∠1+∠2+∠3+∠4=∠A+∠AEG+∠GEF+∠HFE+∠C+∠CFH=540°=3×180°;
由(1)(2)可得角的个数n与角的和之间的关系是(n-1)180°,
∴∠1+∠2+∠3+∠4+…+∠n的度数为(n-1)180°.
【题目】小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t) | 频数 | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 |
|
|
5≤x<6 | 10 | 20% |
6≤x<7 |
| 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.