题目内容
【题目】如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.
(1)如图1,若△ABC为直角三角形,求的值;
(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;
(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕4. 求的值.
【答案】(1) ;(2) 和;(3)
【解析】
(1)设,,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;
(3)过点作DH⊥轴于点,由::,可得::.设,可得 点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到 ①,将代入抛物线上,可得②,联立①②解方程组,即可解答.
解:设,,则是方程的两根,
∴.
∵已知抛物线与轴交于点.
∴
在△中:,在△中:,
∵△为直角三角形,由题意可知∠°,
∴,
即,
∴,
∴,
解得:,
又,
∴.
由可知:,令则,
∴,
∴.
①以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为.
②当以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为
∴符合条件的点坐标为和.
过点作DH⊥轴于点,
∵::,
∴::.
设,则点坐标为,
∴.
∵点在抛物线上,
∴点坐标为,
由(1)知,
∴,
∵∥,
∴△∽△,
∴,
∴,
即①,
又在抛物线上,
∴②,
将代入①得:,
解得(舍去),
把代入②得:.
【题目】书籍是人类进步的阶梯,联合国教科文组织把每年的4月23日确定为“世界读书日”,某校为了了解该校学生一个学期阅读课外书籍的情况,在全校范围内随机对100名学生进行了问卷调查,根据调查的结果,绘制了统计图表的一部分:一个学期平均一天阅读课外书籍所有时间统计表
时间(分钟) | 20 | 40 | 60 | 80 | 100 | 120 |
人数 | 43 | 31 | 15 | 5 | 4 | 2 |
请你根据以上信息解答下列问题:
(1)补全图1、图2;
(2)这100名学生一个学期平均每人阅读课外书籍多少本?若该校共有1200名学生,请你估计这个学校学生一个学期阅读课外书籍共多少本?
(3)根据统计表,求一个学期平均一天阅读课外书籍所用时间的众数和中位数.