题目内容
【题目】为了提高学生的汉字书写能力,某学校连续举办了几届汉字听写大赛,今年经过层层选拔,确定了参加决赛的选手,决赛的比赛规则是每正确听写出1个汉字得2分,满分是100分,下面是根据决赛的成绩绘制出的不完整的频数分布表、扇形统计图和频数分布直方图.
请结合图表完成下列各题
(1)表中a的值为______,并把频数分布直方图补充完整;
(2)学校想利用频数分布表估计这次决赛的平均成绩,请你直接写出平均成绩;
(3)通过与去年的决赛成绩进行比较,发现今年各类人数的中位数有了显著提高,提高了15%以上,求去年各类人数的中位数最高可能是多少?
(4)想从A类学生的3名女生和2名男生中选出两人进行培训,直接写出选中1名男生和1名女生的概率是多少.
【答案】(1)13,补全频数分布直方图见解析;(2)平均成绩为78.6;(3)去年各类人数的中位数最高可能是8;(4)选中1名男生和1名女生的概率.
【解析】
(1)用E点的频数除以该组的频率得到调查的总人数,然后计算a的值,最后补全频数分布直方图;
(2)取组中值表示各组的平均数,然后根据加权平均数的计算方法求解;
(3)根据中位数的定义得到今年各类人数的中位数为10,然后计算10÷(1+15%)≈8.7,利用人数为整数确定去年各类人数的中位数最高;
(4)画树状图展示所有20种等可能的结果数,找出选中1名男生和1名女生的结果数,然后根据概率公式求解.
(1)调查的总人数为:10÷=50,
所以;
故答案为:13;
频数分布直方图为:
(2)平均成绩=(5×55+7×65+13×75+15×85+10×95)=78.6;
(3)今年各类人数的中位数为10,
10÷(1+15%)≈8.7,
而人数为整数,今年各类人数的中位数比去年提高了15%以上,
去年各类人数的中位数最高可能是:8;
(4)画树状图为:
共有20种等可能的结果数,其中选中1名男生和1名女生的结果数为12,
所以选中1名男生和1名女生的概率==.