题目内容
【题目】先阅读下列材料,然后回答问题:
在关于x的一元二次方程ax2+bx+c=0(a≠0)中,若各项的系数之和为零,即a+b+c=0,则有一根为1,另一根为.
证明:设方程的两根为x1,x2,由a+b+c=0,知b=-(a+c),
∵x==,
∴x1=1,x2=.
(1)若一元二次方程ax2+bx+c=0(a≠0)的各项系数满足a-b+c=0,请直接写出此方程的两根;
(2)已知方程(ac-bc)x2+(bc-ab)x+(ab-ac)=0有两个相等的实数根,运用上述结论证明:.
【答案】(1)x1=-1,x2=-;(2)证明见解析.
【解析】
(1)根据材料中给的方法即可直接写出方程的解;
(2)根据材料中给的方法可得方程的两根为x1=x2=1,由此可得,整理后即可证得结论.
(1)x1=-1,x2=-,证明如下:
设方程的两根为x1,x2,由a-b+c=0,知b=a+c,
∵x==,
∴x1=-1,x2=;
(2)∵(ac-bc)+(bc-ab)+(ab-ac)=0,且方程(ac-bc)x2+(bc-ab)x+(ab-ac)=0有两个相等的实数根,
∴x1=x2=1,
∴,
即ab+bc=2ac,
两边都除以abc,得
.
练习册系列答案
相关题目